MTH 530, Abstract Algebra I (graduate) Fall 2012 ,HW number one (Due: Sat. at 1pm October 6)

Ayman Badawi

QUESTION 1. Let G be a group.

- (i) Suppose that $a \in G$ such that $a^n = e$ for some $n \in Z^+$. Let m = |a|. Prove that $m \mid n$.
- (ii) Let $a \in G$ and suppose that $a^m = a^n$ for some integers m, n where $m \neq n$. Prove that $|a| < \infty$
- (iii) Let $a, b \in G$ such that ab = ba. Let m = |a| and n = |b| where gcd(n, m) = 1. Prove that |ab| = nm
- (iv) Give me an Example of a finite group G where $a, b \in G$, gcd(|a|, |b|) = 1 but $|ab| \neq |a||b|$ (we should conclude that ab = ba in (ii) is crucial!!)
- (v) Let $a \in G$. Prove $|a| = |a^{-1}|$. (First assume $|a| = \infty$ and prove $|a^{-1}| = \infty$. Then assume $|a| = m < \infty$ and prove $|a^{-1}| = m < \infty$)
- (vi) Assume G is an infinite cyclic and $G = \langle a \rangle$ for some $a \in G$. Let $b \in G$ such that $b \neq e$. Prove $|b| = \infty$.
- (vii) Give me an example of an infinite abelian group say G such that G has exactly two elements, say a, b, where |a| = |b| = 3.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com